Supplementary file 6. Practical characteristics of the devices for use in the field | | Name of the device
(Developer) | Weight (kg)/Dimensions (cm) | Calibration and performance maintenance | Operating temperature range | War
m-up
time | Tolerance to operational environment changes | Electricity requirements | Consumables requirements | End-user
skill level
required | Measureme
nt time per
sample | Additional equipment required | Other information | Ref | |-------|---|-----------------------------|---|-----------------------------|---------------------|--|---|---|--|---|--|---|---| | | MiniRam II (B&W
Tek) | 2.9/25.7x
21.1x11.4 § | UNK | UNK | UNK | UNK | Battery-powered (3 hrs life) § | None | UNK | <5 min | UNK | | [1] | | | Raman Rxn1
Microprobe (Kaiser
optical) | 28kg/ 58 x 45 x
20 § | UNK | 20-25°C § | 20
min § | 20-80% humidity § | 110-240V, <200W § | None | UNK | 30s | Software, computer | One sample per | [2] | | | TruScan RM*
(Thermo Scientific,
formerly Ahura) | 0.9/20.8x10.7x4.
3 § | UNK | -20-40°C § | UNK | UNK | Battery-powered (Rechargeable internal lithium ion battery > 3 hrs life) or Mains-powered (100-240 V AC 50/60 Hz) | None | + | Maximum 2
min (+ 5-30
min to
create the
reference
library)[3],
[4],[5],[6] | Reference library
software; Vial holder,
tablet holder | One sample per
run | [3],[4]
[5],
[6],[7],[8],,
[9],[1
0],
[11] | | | TruScan* (Ahura) | <1.8/30x15x7.6 § | Fast and easy
calibration[1]¥;[12];
requires reference
rods (provided by
Ahura)[13] | -20-40°C | Good[
1]¥ | Less sensitive to external factors than Phazir[12] | Battery-powered (Internal lithium
ion battery, >5 hrs life at 25 °C) or
Mains-powered (100-240 V AC
50/60 Hz § | None | + | 30s to 5 min
[12],[14] | Non standard adaptor
for data transfer | Safety
precautions: high
power laser
component[12]-
One sample per
run | [13],[
14],[1 | | Raman | FirstDefender
TruScan* (Thermo
Scientific) | 0.8/19.3x10.7x4.
4 | UNK | -20-50 °C § | UNK | UNK | Battery-powered (lithium ion
battery or 123a batteries; > 4 hrs
life or Mains-powered (DC Wall
Adapter, 12 V 1.25 A) § | None | UNK | UNK | UNK | One sample per run | [17] | | | MIRA* (Metrohm) | 0.54/12.5×8.5×3.
9 § | UNK | -20-40 °C | UNK | UNK | Battery-powered § | None | UNK | < 5 min | UNK | One sample per run | [18] | | | NanoRam* (B&W
Tek) | 1.2kg/22x10x5 § | Calibration following
the developer
procedures, valid for
one year[19] | -20-40°C § | UNK | UNK | Battery-powered (Li-ion, >5 hrs
life) or Mains-powered (AC
adapter: Output DC 12V, 2A
Minimum) § | None | + | 15 s (10 for
entering
data, 5s for
scanning the
sample)
[19];
Reference
spectrum
created in
3.5 min [19] | Validation Cap,
Immersion Probe,
Large Bottle Adapter
§ | One sample per
run | [19],
[20] | | | EZ Raman M
Analyzer* (Enwave
optronics) | ~2.7/10.2x15.9x2
0.9 § | UNK | 10-40°C § | UNK | UNK | Battery-powered-Rechargeable Li
battery (5 hrs life) or 90 VAC to
264 VAC § | None | UNK | 3 min | PC | One sample per | [21] | | | CBEx (Metrohm
Raman) | 0.335 /9x7x3.75 | Daily calibration
(calibration standards
provided, 2-years
lifetime) | -10-40°C | UNK | Can operate in up to 95% non-condensing humidity (manufacturer). Ambient light can cause instrument response issues; however the referencing function generally alleviates these issues. | 2 AA batteries or a micro-USB cable connected to a computer | AA batteries can
be used (approx.
3h run in the study
before having to
change the
batteries) | Based on feedback from study participants: a variety of staff with both technical and non-technical background s can become either basic, intermediate or advanced | Approx 2
min (5 sec to
do scan); 20
min to
develop a
library for
one sample | • | One sample per
run | [22] | | | Name of the device
(Developer) | Weight (kg)/Dimensions (cm) | Calibration and performance maintenance | Operating temperature range | War
m-up
time | Tolerance to operational environment changes | Electricity requirements | Consumables requirements | End-user
skill level
required | Measureme
nt time per
sample | Additional equipment required | Other information | Ref | |----------------|---|--|--|-----------------------------|----------------------|--|---|--------------------------|---|--|--|--|----------------------------------| | | | | | | | | | | users within
approx. two
weeks of
training | | | | | | | EZ-Raman-I (TSI,
Inc) | 11.3/43.2x33.0x1
7.8 | UNK | UNK | UNK | UNK | Rechargeable lithium battery (4 hours operation); 110/220 V DC power supply | None | UNK | 10-40s
acquisition
times in
study | - | | [23] | | NIR-Dispersive | MicroNIR1700*
(JDSU) | 0.06/4.5cm
diameterx4.2cm
height | UNK- NB:Re-zeroing
every 15 min in
study[24] | -20-40°C | UNK | UNK | USB-powered (<500 mA at 5V) | None | + with
Onsite
Software | < 1 min | PC or Tablet;
Polyethylene plastic
bag with an X heat
sealed onto the bag | Bulb life >40,000
hr - One sample
per run; Requires
polyethylene bag
with an X heat
sealed onto the
bag when the
sample is very
small [25] | | | | SCiO (Consumer
Physics) | Smartphone-sized | UNK | UNK | UNK | UNK | UNK | None | + | Acquisition
time per
spectrum: 2s | Smartphone | | [26] | | | D-NIRS | <
2/19.1x9.3x12.0 | UNK | UNK | UNK | UNK | Mains-powered | None | UNK | 3 min (ref [27]) | Computer, software | | [28],
[27] | | | RxSpec 700Z
(ASD) | UNK/Briefcase-
sized' | Very good¥ | UNK | Bad¥ | UNK | UNK | None | UNK | UNK | UNK | | [1] | | | MicroPhazir*
(Thermo Scientific) | 1.25/25.4x29.2x1
5.2 § | UNK | +5-45°C § | UNK | Dust proof,splash proof plastic housing § | Battery-powered (5+ hrs lifetiem,
lithium-ion battery pack) or Mains-
powered § | None | + | < 5 min | Laptop if more
complicated
chemometrics
approaches are used
[29] | One sample per run | [3],[9]
,[10],[
29] | | NIR-Fourier | Phazir RX*
(Polychromix) | 1.8/25.4x29.2x15
.2 § | Very Good[1]¥; Fast
and easy[12] | +5-45°C \$ | Very
Good[
1]¥ | Testing needs to be done in a light controlled environment (results altered if ambient light changed significantly); Sensitive to humidity changes,sample position,sample face for tablets - issues that can be overcome by repeated testing [12]; Dust proof,splash proof plastic housing | Battery-Powered (10 hrs life, quick change battery) | None | + | 2-5 s | - | One sample per
run | [1],[1
2]*,[3
0]*,[3
1] | | Transform | Phazir RX*
(Thermo Scientific)
newly MicroPhazir? | 1.8/25.4x29.2x15
.2 | UNK | +5-40°C | UNK | UNK | UNK | None | + | UNK | Optional adapter is
available that can be
attached magnetically
to the front of the
instrument to
optimize sample
presentation | One sample per run | [17] | | | Luminar 5030*
(Brimrose) | UNK | Quite good[1]¥ | UNK | Good | UNK | Battery-Powered (2 VDC battery) or Mains-powered (110/220V) § | None | UNK | UNK | PC interface with
ethernet connection;
Windows-based
analytical software for
data acquisition § | | [1] | | | Name of the device
(Developer) | Weight (kg)/Dimensions (cm) | Calibration and performance maintenance | Operating temperature range | War
m-up
time | Tolerance to operational environment changes | Electricity requirements | Consumables requirements | End-user
skill level
required | Measureme
nt time per
sample | Additional equipment required | Other information | Ref | |---|--|-----------------------------|---|-----------------------------|--|---|---|--------------------------|--|--|--|---|---------------------------------| | | Target Blend
Analyzer (Thermo
Scientific) | 9.9/20.8x35.4x30
.9 § | Very good¥ | UNK | Bad¥ | UNK | Battery-powered (3.5 hrs life) § | None | UNK | UNK | PC, software § | | [1] | | | MLp (A2 technologies) | UNK | Good¥ | UNK | Very
good¥ | UNK | UNK | None | UNK | UNK | UNK | | [1] | | | Nicolet iS 10
(Thermo Scientific) | 33/25x57x55 § | Very good¥ | UNK | Quite
good¥ | Tightly sealed to resist ambient humidity § | Mains-powered (100-240 V, 50/60 Hz) § | None | UNK | UNK | UNK | | [1] | | MIR Fourier
Transform | Exoscan*(A2
technologies - now
Agilent
technologies;
specifications
quoted for Exoscan
4100) | 3.2/17.1x11.9x22
.4 § | Good[1]¥ (built-in
'performance
validation' tests for
user to run) | 0-50°C § | Very good[
1]¥ (5
min -
from
manuf
acture
r) | Tolerates up to 95%
humidity; packaged in
'weather-resistant
enclosure' designed for
outdoor use; altitude up to
2000m § | Battery-Powered (up to 4 hrs life) or Mains-powered (110/220 VAC § | None | UNK | UNK | Comes with handheld
PC as standard; can
be interfaced to laptop
§ | One sample per run | [1] | | Combined NIR/MIR Fourier | TruDefender FT*
(Thermo Scientific) | 1.3/19.6x11.2x5. | UNK | -25-40 °C § | UNK | UNK | Battery-powered (rechargeable
lithium ion battery or 123a -ie
SureFire™- batteries; >4 hrs life or
Mains-powered (Wall plug
transformer 100-240 VAC 50/60 Hz
§ | None | UNK | UNK | Crusher accessory for
powders (to press the
samples against
diamond refelection
element)[17] | Little maintenance | e [17] | | Transform | Cary 630 (Agilent) | 3.8/16x31x13 § | UNK | UNK | 1hour | UNK | Mains-powered (110 – 240 VAC, 60/50 Hz) § | None | UNK | UNK | UNK | | [9],[1
0] | | | FT/IR-4100
(JASCO Inc, Tokyo,
Japan) | 33/446x64.5x29
§ | UNK | UNK | UNK | UNK | Mains-powered | None | UNK | UNK | UNK | | [5] | | Camera system
with various LED
sources | CD3/CD3+* (US
FDA) | 0.3/15.2x7.6 | UNK | UNK | UNK | UNK | Battery-Powered (3 to 8 hrs life) or
Mains-powered | None | + Accuracy
improves
with
experience | < 1 min | Digital handheld
microscope can be
used to examine
suspect samples at
higher magnifications
[32]; Library software
[33],[32] | | [33],[
32],[3
4],[35
] | | Low-cost laser
absorption/fluore
scence | Counterfeit Drug
Indicator-CoDI*
(Michael D. Green,
CDC) | UNK | UNK | UNK | None§ | UNK | 9V alkaline battery§ | Aluminium foil§ | + | < 1 min | - | - | [34] | | Reflectance | SOC-410
Directional
Hemispherical
Reflectometer*
(Surface Optics
Corporation) | 29.3x22.9x9.4 § | UNK | 0-40°C § | UNK | UNK | Battery-powered § | None | + | 5 seconds
(measureme
nt at one
spectral
band and
one angle) | UNK | - | [36] | | | Glossmeter-
Unnamed
(University of
Eastern Finland) | UNK | UNK | UNK | UNK | UNK | Rechargeable battery | None | + | UNK | UNK | Calibration with a
commercial black
glass gloss
standard in the
study | | | | Name of the device
(Developer) | Weight (kg)/Dimensions (cm) | Calibration and performance maintenance | Operating temperature range | War
m-up
time | Tolerance to operational environment changes | Electricity requirements | Consumables requirements | End-user
skill level
required | Measureme
nt time per
sample | Additional equipment required | Other
information | Ref | |--|--|---|---|---|---------------------|---|--|---|---|--|--|--|---------------| | Refractometry | AR200 digital
refractometer*
(Leica
Microsystems) | 0.41/18x9x3.5 § | Simple calibration
system built into
machine § | 10-
45°C;Temperature
dependent testing
but adding blank
and reference
standard to confirm
the integrity of the
assay | UNK | Refractive index is temperature-dependent; max tolerated humidity 50-80% (temperature-dependent; tolerated humidity decreases with increasing ambient temperature), pollution degree 2, altitude up to 2000m | Battery-powered (4xAAA batteries)
§ | +++ glass vials,
enteric coating
remover solutions,
extraction
solvents, reference
standards; AAA
batteries | UNK | UNK | UNK | >3000 tests before
replacing batteries | | | Reflectance
colour
measurement | X-rite eye-one*
(Regensdorf) | 0.245/15.5x6.6x6
.7 § | UNK- NB:
Calibration performed
every 10 scans in
study | 10-35°C | UNK | Ambient light interference if the scanner does not adhere perfectly to the tablet surface; Humidity tolerance 0-80% (noncondensing); Dust and Water resistance IP 65; No influence of temperature (20° and 30°C) | USB-powered § | None | + | Few seconds | Laptop computer with
USB port | | [39] | | Lateral flow
immunoassay
dipsticks | Unnamed** | Few grams | N/A | UNK | None | No significant change in sensitivity when stored at room temperature for 2 weeks [40]; LOD increased after 3 months at 4°C and ambient temperatures for primary made dipsticks targetting all artemisinin derivatives [41] (more investigations are needed for the newer single-API targeted dipsticks) | None | Solvents | + | 10 min | Dropper (supplied
with plate) | Single use device;
Non toxic reagents
- Waste
management:
solvents | | | | Paper-based strip –
unnamed** | UNK (likely
<0.1)/UNK (4 x
8mm filter paper
circles on
mounted on chip) | N/A | UNK | N/A | Requires controlled pH | None (if smartphone used to read
the cards - battery-powered) | Solvents | UNK | 5 min (+ 5
min for
semi-
quantitative
analysis
using the
smartphone
application) | Smartphone (to take
digital images and
measure gray scale
intensity-improves
quantitative accuracy) | Single use device | [43] | | Paper-based
devices | Paper analytical device** | UNK (likely < 0.05)/Size of a Playing card | N/A | UNK | None | Majority of reactants
stable up to 104 days at
37°C (some reactant lanes
degrade within 2-7 days of
fabrication[44]) | None | Water used as solvent | + | 10-20 min | None | Single use device;
Non toxic reagents
- Waste
management: All
reagents non-toxic | [44],
[45] | | | aPAD | UNK Size of a playing card | N/A | UNK | None | UNK | None | Solvents, reagents | + (Successful tests interpretatio n by n=1 analyst (unknown qualification) unfamiliar to the aPAD [46] | 30-60 minutes | Mortar, Pestle,
Analytical balance,
Pipet;Can use
smartphone camera to
analyse results (visual
inspection adequate) | Single use device | [47],[
46] | | | Name of the device
(Developer) | Weight (kg)/Dimensions (cm) | Calibration and performance maintenance | Operating temperature range | War
m-up
time | Tolerance to operational environment changes | Electricity requirements | Consumables requirements | End-user
skill level
required | Measureme
nt time per
sample | Additional equipment required | Other information | Ref | |---|---|-----------------------------|--|--|---------------------|--|--|---|--|---|---|---|--| | TLC,
colorimetry,disint
egration test | GPHF-Minilab
(Global Pharma
Health Fund E.V.) | ~50/83x52x29 | Performing TLC on
reference APIs and
reagents | - | None | TLC requires dedicated climate controlled location; Tropics-compatible but avoiding direct sunlight. No special storage area required for the quantities of chemicals supplied. | Electricity required for UV detectors -can be Battery-Powered 9 | Reagents;solvents;
reference
standards;TLC
plates;potable
water; NB:2 to 5
years shelf-life for
authentic
secondary
reference
standards;5 years
shelf-life for
reagents and
solvents in their
original packaging | (Medium
Lab Skills -
Training of
at least one-
week;profici
ency testing
highly
recommend
ed | 30min -1h30
[48],[49] | Lab glassware | No maintenance[49],[7]; 1000 TLC can be run with available solvents/reagents available at purchase; Safety precautions:some toxic/inflammable solvents/reagents Waste management: must dispose of TLC solvents | [7],[1
2]
,[15],[
48],
[49]*,
[50],
[51],[
52],
[53]*,
[54] | | Dissolution
microfluidics
with
luminescence
detection | PharmaChk beta 1.1 | 8.2/Pelican
briefcase' | Inbuilt calibration;
Need new stock
solution of reference
drug each day | UNK | UNK | UNK | Mains-powered (12V power source
from 110/220V | Solvents (Acetylnitrile, NaOH); luminol and hematin porcine probe; Stock solution made with 200- proof ethanol | UNK | 5 min | UNK - PC and
software should be
provided by the
company in the kit | Safety precautions:Acetyl nitrile solvent is toxic Waste management: on- board waste container; can run 10-15 samples before emptying | [55] | | Mass
spectrometry | QDa single
quadropole (Waters) | 29.4/35.3x20.0x7
5.0 | Internal Calibration performed daily | UNK | 10min | UNK | Mains powered 110-240V AC 50/60Hz | Solvents; Gas | | Few min for
both sample
preparation
and MS
introduction | PC, Software;
Ionisation source
(some can be
transportable but
usually requires
power and gas) | Needs to remain
stationary when in
operation. | [56] | | Nuclear
quadrupole
resonance (NQR) | Prototype | UNK/Carry-on
luggage | UNK | UNK- NB:Spectra
recorded at room
temperature | UNK | UNK | Battery-Powered (12V Lithium battery) § | None | UNK
(aiming
minimal) | UNK | 12V Li battery, PC | | [57] | | Ion mobility | SABRE 4000*
(Smiths Detection,
Danbury) | 3.1/36.8
x10.2x11.4 | UNK | UNK | 10
min § | UNK | Battery-Powered (4hr life) § | Solvents | UNK | < 1 min | Solvent; pipette;
centrifuge; scales able
to weight ng weights;
software | One sample per run | [58] | | spectrometry | IONSCAN-LS
(Smiths Detection,
Danbury) | 42/62x41x88 § | UNK | UNK | UNK | No significant change in
ion mobility with humidity
(tested at 60% and 90%
relative humidity)[58] | Mains-powered (95-265 VAC) § | Solvents;Nitrogen
gas | UNK | UNK | Software, nitrogen gas | | [58],
[59]* | | Capillary
electrophoresis | Unnamed | UNK | UNK | UNK | UNK | If non-thermostated
instrument, measurements
can be affected by
changing temperatures | Battery-powered (Lithium battery
pack (14.8V; 6.6Ah) for
electrophoretic and fluidic parts+a
pair of Li-ion batteries (2.8 Ah
each) for the C4D or Mains-
powered | Buffer; Solvents;
pH adjusting
solutions | UNK | UNK | PC | Safety
precautions: safety
cage needed for
high-voltage
components | | | Pressure changes
measurement
(respirometer
system) | Speedy Breedy
(Bactest) | 2.75/13.3x31
x11.2 | UNK | UNK | UNK | The device is not waterproof and unshielded, so above normal electromagnetic interference could result in ineffective tests. The instrument is robust but not ruggedized and has not | Local mains AC power supply or
12V DC (car adapter is
available) Voltage: Variable (230V
/ 50Hz – 120V / 60Hz) | Media vessels,
sterile plastic
water bottles,
sterile syringes | Based on
feedback
from study
participants:
a variety of
staff with
both
technical | Can exceed
24 hours
(each
protocol has
a different
run time that
is bacteria
specific) | None | None | [61] | | Name of the device (kg)/Dime (Developer) (cm) | nsions performance | Operating Watemperature range time | ip environment changes | Electricity requirements | Consumables requirements | End-user
skill level
required | Measureme
nt time per
sample | Additional equipment required | Other information | Ref | |---|--------------------|------------------------------------|---------------------------|--------------------------|--------------------------|-------------------------------------|------------------------------------|-------------------------------|-------------------|-----| | | | | been drop tested. | | | and non- | | | | | | | | | However, provided | | | technical | | | | | | | | | humidity, dust, and | | | background | | | | | | | | | vibration changes are not | | | s can | | | | | | | | | too rapid or severe, the | | | become | | | | | | | | | instrument can tolerate | | | either basic, | | | | | | | | | fluctuations very well | | | intermediate | | | | | | | | | | | | or advanced | | | | | | | | | | | | users within | | | | | | | | | | | | approx. two | | | | | | | | | | | | weeks of | | | | | | | | | | | | training | | | | | LOD, limit of detection; LOQ, limit of quantitation; TLC, Thin-layer chromatography, AL, Artemether-lumefantrine; API, Active Pharmaceutical Ingredient; ASA, acetylsalicylic Acid; HPLC, High Performance Liquid Chromatography, SP, sulfadoxine-pyrimethamine; Se, Sensitivity; Sp, specificity, RDT, Rapid Diagnostic Test, FRTR: Fast Red Dye Reaction; LOD, limit of detection - 1. Degardin K, Roggo Y, Margot P. Evaluation of Raman, infrared and near infrared hand held spectrometers for the detection of counterfeit medicines. Spectra Anal. 2010;39(276):46–52. - 2. Sacré PY, Deconinck E, Saerens L, De Beer T, Courselle P, Vancauwenberghe R, et al. Detection of counterfeit Viagra by Raman microspectroscopy imaging and multivariate analysis. J Pharm Biomed Anal. 2011;56(2):454–61. - 3. Kalyanaraman R, Dobler G, Ribick M. Portable spectrometers for pharmaceutical counterfeit detection. Am Pharm Rev. 2010;13(3):38–45. - 4. Kalyanaraman R, Ribick M, Dobler G. Portable Raman Spectroscopy for Pharmaceutical Counterfeit Detection. Eur Pharm Rev. 2012;17(5):11–5. - 5. Fukami T, Koide T, Hisada H, Inoue M, Yamamoto Y, Suzuki T, et al. Pharmaceutical evaluation of atorvastatin calcium tablets available on the Internet: A preliminary investigation of substandard medicines in Japan. J Drug Deliv Sci Technol. 2016;31:35–40. - 6. Lanzarotta A, Lorenz L, Batson JS, Flurer C. Development and implementation of a pass/fail field-friendly method for detecting sildenafil in suspect pharmaceutical tablets using a handheld Raman spectrometer and silver colloids. J Pharm Biomed Anal [Internet]. 2017;146:420–5. Available from: http://www.elsevier.com/locate/jpba - 7. Batson JS, Bempong DK, Lukulay PH, Ranieri N, Duane SR, Verbois L. Assessment of the effectiveness of the CD3+ tool to detect counterfeit and substandard anti-malarials. Malar J. 2016;15:119. - 8. Degardin K, Guillemain A, Roggo Y. Comprehensive Study of a Handheld Raman Spectrometer for the Analysis of Counterfeits of Solid-Dosage Form Medicines. J Spectrosc. 2017;2017:1–13. - 9. Ma B, Wang L. An application of rapid detection technologies in a national regulatory laboratory setting: Differentiating imported and domestic drug products of oxcarbazepine using handheld Raman, near infrared, and portable FTIR analyzers. Am Pharm Rev. 2015;18(2):no pagination. - 10. Ma B, Huong LTT, Liu Y, Kamel MM, Zhao E. Rapid detection of counterfeit drugs of ethambutol hydrochloride and cefuroxime axetil using handheld raman, near infrared and portable FTIR technologies. Am Pharm Rev. 2014;17(5):54–61. - 11. Kakio T, Yoshida N, Macha S, Moriguchi K, Hiroshima T, Ikeda Y, et al. Classification and Visualization of Physical and Chemical Properties of Falsified Medicines with Handheld Raman Spectroscopy and X-Ray Computed Tomography. Am J Trop Med Hyg. 2017;97(3):684–9. - 12. Bate R, Tren R, Hess K, Mooney L, Porter K. Pilot study comparing technologies to test for substandard drugs in field settings. African J Pharm ^{*}Indicates papers published before 2010 [¥]The study by Dégardin et al. presents a subjective comparison of multiple devices. Each device feature is described as being 'Very good', 'good', 'quite good' or 'bad' without definition of these NB the final authors' choice of best device per technology is 1:TruScan, 2:Phazir, 3:Mlp +: minimal (<2 hours training); ++: low (2 hours to 1 day of training); +++: high (>1 day of training) [§] Information retrieved from the manufacturer website or from contacts with manufacturer - Pharmacol. 2009;3(4):165-70. - 13. Hajjou M, Qin Y, Bradby S, Bempong D, Lukulay P. Assessment of the performance of a handheld Raman device for potential use as a screening tool in evaluating medicines quality. J Pharm Biomed Anal. 2013;74:47–55. - 14. Assi S, Watt R, Moffat T. Comparison of laboratory and handheld Raman instruments for the identification of counterfeit medicines. Spectrosc (Duluth, MN, United States). 2011;(Suppl.):36,38-44,46-47. - 15. Bate R, Hess K. Anti-malarial drug quality in Lagos and Accra A comparison of various quality assessments. Malar J. 2010;9(1). - 16. Ricci C, Nyadong L, Yang F, Fernandez FM, Brown CD, Newton PN, et al. Assessment of hand-held Raman instrumentation for in situ screening for potentially counterfeit artesunate antimalarial tablets by FT-Raman spectroscopy and direct ionization mass spectrometry. Anal Chim Acta. 2008;623(2):178–86. - 17. Sorak D, Herberholz L, Iwascek S, Altinpinar S, Pfeifer F, Siesler HW. New Developments and Applications of Handheld Raman, Mid-Infrared, and Near-Infrared Spectrometers. Appl Spectrosc Rev. 2012 Feb;47:83–115. - 18. Le LMM, Tfayli A, Zhou J, Prognon P, Baillet-Guffroy A, Caudron E. Discrimination and quantification of two isomeric antineoplastic drugs by rapid and non-invasive analytical control using a handheld Raman spectrometer. Talanta. 2016;161:320–4. - 19. Visser BJ, de Vries SG, Bache EB, Meerveld-Gerrits J, Kroon D, Boersma J, et al. The diagnostic accuracy of the hand-held Raman spectrometer for the identification of anti-malarial drugs. Malar J. 2016;15:160/1-160/12. - 20. Assi S. Investigating the quality of medicines using handheld Raman spectroscopy. Eur Pharm Rev. 2014;19(5):56–60. - 21. Corrigan DK, Salton NA, Preston C, Piletsky S. Towards the development of a rapid, portable, surface enhanced Raman spectroscopy based cleaning verification system for the drug nelarabine. J Pharm Pharmacol. 2010;62:1195–200. - 22. United States Pharmacopoeial Convention. USP Technology Review: CBEx. 2017 [cited 2018 May 8]; Available from: http://www.usp.org/sites/default/files/usp/document/our-work/global-public-health/tr-report-cbex.pdf - 23. Tondepu C, Toth R, Navin C V, Lawson LS, Rodriguez JD. Screening of unapproved drugs using portable Raman spectroscopy. Anal Chim Acta. 2017;973:75–81. - 24. Alcala M, Blanco M, Moyano D, Broad NW, O'Brien N, Friedrich D, et al. Qualitative and quantitative pharmaceutical analysis with a novel hand-held miniature near infrared spectrometer. J Near Infrared Spectrosc. 2013;21(6):445–57. - Pederson CG, Friedrich DM, Hsiung C, von Gunten M, O'Brien NA, Ramaker H-J, et al. Pocket-size near-infrared spectrometer for narcotic materials identification. In: Next-Generation Spectroscopic Technologies VII, Proceedings of SPIE Vol 9101, 910100. 2014. p. 910100–1–11. - 26. Wilson BK, Kaur H, Allan EL, Lozama A, Bell D. A New Handheld Device for the Detection of Falsified Medicines: Demonstration on Falsified Artemisinin-Based Therapies from the Field. Am J Trop Med Hyg. 2017 Feb; - 27. Ishikawa D, Murayama K, Genkawa T, Awa K, Komiyama M, Ozaki Y. Development of a compact near infrared imaging device with high-speed and portability for pharmaceutical process monitoring. NIR news. 2012;23(8):14–7. - 28. Ishikawa D, Murayama K, Awa K, Genkawa T, Komiyama M, Kazarian SG, et al. Application of a newly developed portable NIR imaging device to monitor the dissolution process of tablets. Vol. 405, Analytical and Bioanalytical Chemistry. Y. Ozaki; 2013. p. 9401–9. - 29. Zontov Y V, Balyklova KS, Titova A V, Rodionova OY, Pomerantsev AL, Y.V. Z, et al. Chemometric aided NIR portable instrument for rapid assessment of medicine quality. J Pharm Biomed Anal. 2016;131:87–93. - 30. Polli JE, Hoag SW, Flank S. Near-infrared spectrophotometric comparison of authentic and suspect pharmaceuticals. Pharm Technol. 2009;33(8):46–52. - 31. Obeidat SM, Al-Tayyem BAN. Spectroscopic and chemometric analysis of illegally manufactured formulations of selected medicines. Orient J Chem. 2012;28(2):795–801. - 32. Ranieri N, Tabernero P, Green MD, Verbois L, Herrington J, Sampson E, et al. Evaluation of a new handheld instrument for the detection of counterfeit artesunate by visual fluorescence comparison. Am J Trop Med Hyg. 2014;91(5):920–4. - 33. Batson JS, Bempong DK, Lukulay PH, Ranieri N, Satzger RD, Verbois L. Assessment of the effectiveness of the CD3+ tool to detect counterfeit and substandard anti-malarials. Malar J. 2016;15(1):119. - 34. Green MD, Hostetler DM, Nettey H, Swamidoss I, Ranieri N, Newton PN. Integration of novel low-cost colorimetric, laser photometric, and visual fluorescent techniques for rapid identification of falsified medicines in resource-poor areas: application to artemether-lumefantrine. Am J Trop Med Hyg. 2015;92(6 Suppl):8–16. - 35. Lanzarotta A, Ranieri N, Albright D, Witkowski M, Batson J. Analysis Of counterfeit FDA-Regulated products at the forensic chemistry center: Rapid visual and chemical screening procedures inside and outside of the laboratory. Am Pharm Rev. 2015;18(3):no pagination. - 36. Wilczyński S, Koprowski R, Błońska-Fajfrowska B. Directional reflectance analysis for identifying counterfeit drugs: Preliminary study. J Pharm Biomed Anal. 2016;124:341–6. - 37. Bawuah P, Paakkonen P, Peiponen K-E. Gloss measurement in detection of surface quality of pharmaceutical tablets: a case study of screening of genuine and counterfeit antimalaria tablets. Acad-Rapid Publ. 2017;13:18. - 38. Green MD, Nettey H, Villalva Rojas O, Pamanivong C, Khounsaknalath L, Grande Ortiz M, et al. Use of refractometry and colorimetry as field methods to rapidly assess antimalarial drug quality. J Pharm Biomed Anal. 2007 Jan;43(1):105–10. - 39. Rodomonte AL, Gaudiano MC, Antoniella E, Lucente D, Crusco V, Bartolomei M, et al. Counterfeit drugs detection by measurement of tablets and secondary packaging colour. J Pharm Biomed Anal. 2010;53(2):215–20. - 40. Guo S, Wang B, He L, Tisch DJ, Kazura J, Mharakurwa S, et al. Pilot testing of dipsticks as point-of-care assays for rapid diagnosis of poor-quality artemisinin drugs in endemic settings. Trop Med Health. 2016;44:15. - 41. He L, Nan T, Cui Y, Guo S, Zhang W, Zhang R, et al. Development of a colloidal gold-based lateral flow dipstick immunoassay for rapid qualitative and semi-quantitative analysis of artesunate and dihydroartemisinin. Malar J. 2014;13:127/1-127/10, 10. - 42. Guo S, Zhang W, He L, Tan G, Min M, Kyaw MP, et al. Rapid evaluation of artesunate quality with a specific monoclonal antibody-based lateral flow dipstick. Anal Bioanal Chem. 2016 Sep 12;408:6003–8. - 43. Koesdjojo MT, Wu Y, Boonloed A, Dunfield EM, Remcho VT. Low-cost, high-speed identification of counterfeit antimalarial drugs on paper. Talanta. 2014;130:122–7. - 44. Weaver AA, Reiser H, Barstis T, Benvenuti M, Ghosh D, Hunckler M, et al. Paper Analytical Devices for Fast Field Screening of Beta Lactam Antibiotics and Antituberculosis Pharmaceuticals. Anal Chem. 2013;85(13):6453–60. - 45. Weaver AA, Lieberman M. Paper test cards for presumptive testing of very low quality antimalarial medications. Am J Trop Med Hyg. 2015;92(6 Suppl):17–23. - 46. Myers N. Lab on a paper: adapting quantitative chemical techniques for use in low resource areas [Internet]. 2017 [cited 2018 May 9]. Available from: https://curate.nd.edu/downloads/und:m900ns08m33 - 47. Myers NM, Kernisan EN, Lieberman M. Lab on Paper: Iodometric Titration on a Printed Card. Anal Chem. 2015;87(7):3764–70. - 48. Visser BJ, Meerveld-Gerrits J, Kroon D, Mougoula J, Vingerling R, Bache E, et al. Assessing the quality of anti-malarial drugs from Gabonese pharmacies using the MiniLab: A field study. Malar J. 2015;14(1):no pagination. - 49. Risha PG, Msuya Z, Clark M, Johnson K, Ndomondo-Sigonda M, Layloff T. The use of Minilabs to improve the testing capacity of regulatory authorities in resource limited settings: Tanzanian experience. Health Policy. 2008;87(2):217–22. - 50. Bate R, Jensen P, Hess K, Mooney L, Milligan J, R. B, et al. Substandard and falsified anti-tuberculosis drugs: a preliminary field analysis. Int J Tuberc Lung Dis. 2013;17(3):308–11. - 51. Pribluda VS, Barojas A, Anez A, Lopez CG, Figueroa R, Herrera R, et al. Implementation of basic quality control tests for malaria medicines in Amazon Basin countries: results for the 2005-2010 period. Malar J. 2012;11:202. - World Health Organization. Survey of the quality of Selected antimalarial medicines circulating in Six countries of Sub-Saharan africa [Internet]. Geneva, Switzerland; 2011 [cited 2017 Aug 28]. Available from: http://apps.who.int/medicinedocs/en/d/Js17835en/ - Fisha P, Msuya Z, Ndomondo-Sigonda M, Layloff T. Proficiency testing as a tool to assess the performance of visual TLC quantitation estimates. J AOAC Int. 2006;89(5):1300–4. - 54. Pan H, Ba-Thein W. Diagnostic Accuracy of Global Pharma Health Fund Minilab ™ in Assessing Pharmacopoeial Quality of Antimicrobials. Am J Trop Med Hyg. 2017;tpmd170289. - 55. Desai D. PharmaChk: Robust device for counterfeit and substandard medicines screening in developing regions. [Internet]. 2014. Available from: https://open.bu.edu/handle/2144/12087 - 56. Bernier MC, Li F, Musselman B, Newton PN, Fernandez FM. Fingerprinting of falsified artemisinin combination therapies via direct analysis in real time coupled to a compact single quadrupole mass spectrometer. Anal Methods. 2016;8(36):6616–24. - 57. Barras J, Katsura S, Sato-Akaba H, Itozaki H, Kyriakidou G, Rowe MD, et al. Variable-pitch rectangular cross-section radiofrequency coils for the nitrogen-14 nuclear quadrupole resonance investigation of sealed medicines packets. Anal Chem. 2012;84(21):8970–2. - 58. Dunn JD, Gryniewicz-Ruzicka CM, Kauffman JF, Westenberger BJ, Buhse LF. Using a portable ion mobility spectrometer to screen dietary supplements for sibutramine. J Pharm Biomed Anal. 2011;54(3):469–74. - 59. Gryniewicz CM, Reepmeyer JC, Kauffman JF, Buhse LF. Detection of undeclared erectile dysfunction drugs and analogues in dietary supplements by ion mobility spectrometry. J Pharm Biomed Anal. 2009;49:601–6. - 60. Nguyen TAH, Pham TNM, Doan TT, Ta TT, Saiz J, Nguyen TQH, et al. Simple semi-automated portable capillary electrophoresis instrument with contactless conductivity detection for the determination of beta-agonists in pharmaceutical and pig-feed samples. J Chromatogr A [Internet]. 2014;1360:305–11. Available from: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed16&NEWS=N&AN=604689706 - 61. United States Pharmacopoeial Convention. USP Technology Review: Speedy Breedy. [cited 2018 May 8]; Available from: http://www.usp.org/sites/default/files/usp/document/our-work/global-public-health/technology-review-report-speedy-breedy.pdf